The association of microstructural connectivity in the brain and auditory modulation of representational momentum

Emma Theobald


Perceived displacement from an object’s forward trajectory results in a representational momentum (RM) effect. In a behavioural task, participants watched a video of an actor reaching for/withdrawing from an object after hearing ‘I’ll take it’ or ‘I’ll leave it’, which was either congruent or incongruent with the subsequent action witnessed. The knowledge of other people’s intentions through auditory cues and then the predictions of their actions have been found to create an effect on the strength of RM experienced. The degree to which this auditory information affects the RM effect differs for each individual. This variation could, at least partially, be due to the connectivity between parts of the brain which process auditory information, superior temporal sulcus (STS), and parts processing moving visual stimuli (area MT). Fractional anisotropy (FA) and tract-based spatial statistics (TBSS) analysis of diffusion tensor imaging (DTI) data was used to measure the microstructural connectivity of the areas of interest, which was then correlated with the RM data collected from the behavioural task. Results revealed no significant correlation between auditory modulation of RM effect and brain microstructural connectivity. However results were in line with previous research such as that by Kerzel (2005) and Hudson, Nicholson, Ellis and Bach (2015, submitted) by results being in the anticipated direction and some were approaching significance. Results from this study are integral to our understanding of people’s social perception and can help aid therapies for those with neurological and psychiatric disorders.

Full Text:



Alexander, A. L., Lee, J. E., Lazar, M. & Field, A. S. (2007). Diffusion tensor imaging of the brain. Neurotherapeutics. 4, 3, 316-329.

Beaulieu, C. (2009). The biological basis of diffusion anisotropy. In: Johansen-Berg H, Behrens TEJ, editors. Diffusion MRI. Oxford: Academic Press. p. 105-126.

Blakemore, S. J., & Decety, J. (2001). From the perception of action to the understanding of intention. Nature reviews, Neuroscience. 2, 561-567.

Chen, P., Goedert, K. M., Murray, E., Kelly, K., Ahmeti, S., & Barrett, A. M. (2011). Spatial bias and right hemisphere function: Sex-specific changes with aging. Journal of the International Neuropsychological Society. 15, 1–8.

Courtney, J. R., & Hubbard, T. L. (2008). Spatial memory and explicit knowledge: An effect of instruction on representational momentum. Quarterly Journal of Experimental Psychology. 61, 1778–1784.

Curio, G., Neuloh, G., Numminen, J., Jousmaki, V. & Hari, R. (2000). Speaking modifies voice-evoked activity in the human auditory cortex. Hum. Brain Mapp. 9, 183–191.

DeLucia, P. R., & Maldia, M. M. (2006). Visual memory for moving scenes. Quarterly Journal of Experimental Psychology. 59, 340-360.

DeLucia, P. R., & Mather, R. D. (2006). Motion extrapolation of car-following scenes in younger and older driver. Human Factors. 48, 666–674.

Dittrich, W. H., Troscianko, T., Lea, S. E. & Morgan, D. (1996). Perception of emotion from dynamic point-light displays represented in dance. Perception. 25, 727–738.

Fadiga, L., Fogassi, L., Pavesi, G. & Rizzolatti, G. (1995). Motor facilitation during action observation: a magnetic stimulation study. Journal of Neurophysiology. 73, 2608–2611.

Freyd, J. J., & Finke, R. A. (1984). Representational momentum. Journal of Experimental Psychology: Learning, Memory, & Cognition. 10, 126-132.

Frith, U. (2001) Mind blindness and the brain in autism. Neuron. 32, 969–979.

Geeter, N. D., Crevecoeur, G., Dupré, L., Hecke, W. V. & Leemans, A. (2012). A DTI-based model for TMS using the independent impedance method with frequency-dependent tissue parameters. Physics in Medicine and Biology. 57, 2169-2188.

Goebel, R., Khorram-Sefat, D., Muckli, L., Hacker, H., & Singer, W. (1998). The constructive nature of vision: Direct evidence from functional magnetic resonance imaging studies of apparent motion and motion imagery. European Journal of Neuroscience. 10, 1563 –1573.

Goodale, M. A. & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences. 15, 20-25.

Grèzes, J., Costes, N. & Decety, J. (1998). Top down effect of the strategy to imitate on the brain areas engaged in perception of biological motion: a PET investigation. Cognitive Neuropsychology. 15, 553–582.

Grossman, E., Donnelly, M., Price, R., Pickens, D., Morgan, V., Neighbor, G., & Blake, R. (2000). Brain areas involved in perception of biological motion. Journal of Cognitive Neuroscience, 12, 5, 711-720.

Hubbard, T. L. (1995). Cognitive representation of motion: Evidence for friction and gravity analogues. Journal of Experimental Psychology: Learning, Memory, and Cognition. 21, 241-254.

Hubbard, T. L. (2014). Forms of momentum across space: Representational, operational, and attentional. Theoretical Review. Psychonomic Bulletin & Review.

Hubbard, T. L. & Bharucha, J. J. (1988). Judged displacement in apparent vertical and horizontal motion. Perception & Psychophysics. 44, 211-221.

Hübers, A., Klein, J. C., Kang, J-S., Hilker R. & Ziemann, U. (2012). The relationship between TMS measures of functional properties and DTI measures of microstructure of corticospinal tract. Brain Stimulation. 5, 297-304.

Hudson, M., Nicholson, T., Ellis, R. & Bach, P. (2015). I see what you say: Prior knowledge of other's goals automatically biases the perception of their actions. Manuscript submitted for publication.

Jbabdi, S., Sotiropoulos, S. N., Savio, A. M., Graña, M. & Behrens, T. E. (2012). Model-based analysis of multishell diffusion MR data for tractography: how to get over fitting problems. Magnetic Resonance in Medicine. 68, 6 1846-1855.

Kampe, K. K. W., Frith, C. D. & Frith, U. (2003) “Hey John”: Signals Conveying Communicative Intention toward the Self Activate Brain Regions Associated with “Mentalizing,” Regardless of Modality. Journal of Neuroscience. 23, 12, 5258-5263.

Kerzel, D. (2005). Representational Momentum beyond internalized physics: Embodied mechanisms of anticipation cause errors in visual short-term memory. Current Directions in Psychological Science. 14, 4, 180-184.

Kourtzi, Z., & Kanwisher, N. (2000). Activation in human MT/MST by static images with implied motion. Journal of Cognitive Neuroscience. 12, 1, 48–55.

Le Bihan, D. (2003). Looking into the functional architecture of the brain with diffusion MRI. Nature Reviews Neuroscience. 4, 469-480.

Le Bihan, D., Mangin, J. F., Poupon, C., Clark, C. A., Pappata, S., Molko, N. & Chabriat, H. (2001). Diffusion tensor imaging: concepts and applications. Journal of Magnetic Resonance Imaging. 13, 534-546.

Munger, M. P., Dellinger, M. C., Lloyd, T. G., Johnson-Reid, K., Tonelli, N. J., Wolf, K. & Scott, J. M. (2006). Representational momentum in scenes: Learning spatial layout. Memory & Cognition. 34, 7, 1557-1568.

Nijhawan, R. (2002). Neural delays, visual motion and the flash-lag effect. Trends in Cognitive Sciences. 6, 387-393.

Ruby, P. & Decety, J. (2001). Effect of the subjective perspective taking during simulation of action: a PET investigation of agency. Nature Neuroscience. 4, 546–550.

Schirmer, A. & Kotz, S. A. (2006). Beyond the right hemisphere: brain mechanisms mediating vocal emotional processing. Trends in Cognitive Sciences. 10, 1, 24-30.

Senior, C., Barnes, J., Giampietro, V., Brammer, M. J., Bullmore, E. T., Simmons, A., & David, A. S. (2000). The functional neuroanatomy of implicit motion perception or “representational momentum”. Current Biology. 10(1), 16–22.

Senior, C., Ward, J., & David, A. S. (2002). Representational momentum and the brain: An investigation into the functional necessity of V5/MT. Visual Cognition. 9, 1-2, 81-92.

Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping. 17, 143–155.

Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., Watkins, K. E., Ciccarelli, O., Cader, M. Z., Matthews P. M. & Behrens, T. E. J. (2006).Tract-based special statistics: Voxelwise analysis of multi-subject diffusion data. NeuroImage. 31, 1487-1505.

Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E.J., Johansen-Berg, H., Bannister, P.R., De Luca, M., Drobnjak, I., Flitney, D.E., Niazy, R., Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J.M. & Matthews P.M. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage. 23, S1, 208-219.

Thornton, I. M., & Hayes, A. E. (2004). Anticipating action in complex scenes. Visual Cognition. 11, 341-370.

Tuch, D. S., Wedeen, V. J., Dale, A. M., George, J. S. & Belliveau, J. W. (2001). Conductivity tensor mapping of the human brain using diffusion tensor MRI. Proceedings of the National Academy of Science. USA. 98, 11697-11701.

Vogeley, K., Bussfeld, P., Newen, A., Herrmann, S., Happe´, F., Falkai, P., Maier, W., Shah, N. J., Fink, G. R., Zilles, K. (2001). Mind reading: neural mechanisms of theory of mind and self-perspective. NeuroImage. 14,170–181.

Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M., Nichols, T. E. (2014). Permutation inference for the general linear model. NeuroImage. 92, 381-397.

Zhu, D., Zhang, T., Jian, X., Hu, X., Chen, H., Yang, N., Lv, J., Han, J., Guo L. & Liu, T. (2014). Fusing DTI and fMRI data: A survey of methods and applications. Review. NeuroImage. 102, 184-191.


  • There are currently no refbacks.

Creative Commons License 
This work is licensed under a Creative Commons Attribution 3.0 License

ISSN 1754-2383 [Online] ©University of Plymouth