Callosal connectivity and interhemispheric bilateral advantage: a Diffusion Tensor Imaging study

Sophie Clarke


There is wide acknowledgement that the cerebral hemispheres do not operate in isolation when processing complex visual stimuli (Singh, 2000; Schulte & Muller-Oehring, 2010). Patterns of interhemispheric communication are believed to be integral to such cognitive abilities, yet the circumstances under which communication takes place and the nature of information being processed is poorly understood. This experiment addresses the role of interhemispheric communication regarding inter-individual differences in underlying white matter (WM) relating to the matching facial identity. Several studies have already documented the role of WM in processing abilities such as with differences in gender, age and disease (Schulte & Muller-Oehring, 2010). This study though, specifically aimed at establishing whether a bilateral advantage (BA) in processing facial identity of 21 healthy individuals, could too be explained by inter-individual differences in underlying callosal microstructure. In a behavioural task, participants performed a perceptually complex physical identity task using facial stimuli presented to either one hemisphere or split between both before making a key press in response to identity. Fractional anisotropy (FA) and Tract-based Spatial Statistics (TBSS) analysis of diffusion tensor imaging (DTI) was employed to measure the underlying tissue structure of the brain in areas of the corpus callosum (CC). This was then correlated with the BA data collected from the behavioural task. Results revealed no significant relationship between BA and individual WM, however tracts identified were in line with prior research and some were seen to be approaching significance.

Full Text:



Alexander, A. L., Lee, J. E., Lazar, M., & Field, A. S. (2007). Diffusion Tensor Imaging of the brain. Neurotherapeutics, 4(3), pp316-329.

Ardekani, B., A., Nierenberg, J., Hoptman, M., Javitt, D., & Lim, K. O. (2003). MRI study of white matter diffusion anisotropy in schizophrenia. Brain Imaging, 14 (16), pp 2025-2029.

Banich, M. T. & Belger, A. (1990). Inter-Hemispheric interaction: how does the hemisphere’s divide and conquer a task? Cortex, 26, pp 77-94.

Beaumont, G., & Diamond, S. (1975). Interhemispheric transfer of figural information in right and non-right handed subjects, Acta Psychologica, 39, pp97-104.

Beaulieu, C. (2002). The basis of anisotropic water diffusion in the nervous system: a technical review. NMR biomed, 15, pp435-455.

Belger, A., & Banich, M., T. (1992). Inter-hemispheric interaction affected by computational complexity. Neuropsychologia, 30 pp 923-929.

Behrens, T. E. J., Woolrich, M. W., Jenkinson M., Johansen-Berg, H., Nunes, R., G., Clare, S., Mathews, P., M., Brady, J., M., & Smith, S., M. (2003). Characterisation and propagation of uncertainty in diffusion-weighted MR imaging. Magnetic Resonance in Medicine, 50(5), pp1077-1088.

Behrens, T., E., J, Johansen-Berg, H., Woolrich, M. W., Smith, S. M., Wheeler-Kingshott, C. A., M., Boulby, P. A., Barker, G. J., Sillery, E. L., Sheelan, K.., Ciccarelli, O., Thompson, A. J, Brady, J. M., & Mathews, P. M. (2003). Non-Invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nature Neuroscience, 6(7), pp 750-757.

Bennett, J., Madden, D. J., Vaidya, J., Howard, D. V., & James, H. H. (2010). Age-related differences in multiple measures of WM integrity: Diffusion tensor imaging study of healthy aging, Human Brain Mapping, 31 (3), pp378-390.

Chenevert, T., L., Brunberg, J., A., & Pipe, J., G. (1990). Anisotropic diffusion in human white matter: demonstration of MR techniques in vivo, Radiology, 117, pp401-405.

Cherbuin, N., & Brinkman, C. (2006a) Efficiency of Callosal Transfer and Hemispheric Interaction. Neuropsychology, 20 (2), pp 178-184

Cherbuin, N., & Brinkman, C. (2006b). Hemispheric interactions are different in left handed individuals. Neuropsychology, 20 (6), pp700-7007

Compton, R. J. (2002). Inter-Hemispheric interaction facilitates Face Processing, Neuropscyhologia, 40, pp 2409-2419.

Ewing-Cobbs, L., Hasan, K., M., Prasad, M., R., Kramer, L., & Bachevalier, J. (2006). Corpus Callosum diffusion anisotropy correlates with neurophysiological outcomes in twin’s disconcordant with traumatic brain injury, American Journal of Neuroradiology, 27, pp879-881.

Fields, R. D. (2008). White matter in learning, cognition and psychiatric disorders. Trends in Neuroscience, 31, pp 361-370.

Fling, B. W., Peltier, S. J., Bo, J., Welsh, R. C., & Seidler, R. D. (2011). Age Differences in Interhemispheric interactions: Callosal structure, physiological function and behaviour, Frontiers in Neuroscience, 5 (38).

Gazzinga, M. S. (2000). Cerebral specialisation and interhemispheric communication: does the corpus callosum enable the human condition? Brain, 123, pp1293-326.

Gazzaniga, M. S. (2005). Forty-Five years of split brain research and still going strong. Nature Reviews Neuroscience, 6, pp 653-659.

Geeter, N. D., Grevecoeur, G., Dupre, L., Hecke, W. V., & Leemans, A. (2012). A DTI-model for TMS using the independent impedance methods with frequency-dependent tissue parameters. Physics in Medicine and Biology, 57, pp 2169-2188.

Geffen, G., Bradshaw, J. L., & Wallace. (1971). Interhemispheric effects on reaction time to verbal and non-verbal visual stimuli. Journal of Experimental Psychology, 18 (3), pp415-422.

Hangmann, P., Jonasson, L., Maeder, P., Thiran, J., P., Weeden, V. J., & Meruli, R. (2006). Understanding diffusion MR Imaging techniques: from scalar diffusion-weighted imaging to diffusion-tensor imaging and beyond. Radiographics, 26 (1), pp 205-223

Hua, K., Zhang J., Wakanna, S., Jiang, H., Li, X., Reich, D. S., Calabresi, P. A., Pekar, J. J., Van Zijl, P. C. M., & Mori, S. (2008). Tract probability maps in stereotaxic spaces: analysis of white matter anatomy and tract-specific quantification, Neuroimage, 39(1), pp 336-347.

Jbabdi, S., Sotiropoulos, S. N., Savio, A., Grana, M., & Behrens, T. E. J. (2012). Model-based analysis of multishell diffusion MR data for tractography: How to get over fitting problems. Magnetic Resonance in Medicine.

Johansen-Berg, H., Behren, T., E. J., Robson, M. D., Drobnjak, I., Rushworth, M. F. S., Brady, J. M., Smith, S., M., Higham, D. J., & Mathwes, P. M. (2004). Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 101 (36), pp13335-13340

Kalat, J. (1998). Biological Psychology. Pacific Grove, CA: Brooks

Klingberg, T., Hedehus, M., Temple, E., Saltz, T., Gabrielli, J., D., Moeseley, M. E., & Poldrack, R. A. (2000). Microstructure of temporo-parietal white matter as a basis for reading ability: evidence from diffusion tension imaging. Neuron, 25, pp 493-500

Le Bihan, D. (2003). Looking into the functional architecture of the brain with diffusion MRI. Nature Reviews Neuroscience, 4, pp 469-546.

Le Bihan, D., Mangin, J. F., Poupon, C., Clark, C. A., Pappata, S., Molko, N., & Chabriat, H. (2001). Diffusion tensor imaging: concepts and applications. Journal or Magnetic Resonance Imaging, 13, pp534-546.

Makirs, N., Golstienn, J. M., Kennedy, D., Hodge, S. M., Caviness, V. S, Faraone, S. V, Tsuang, M. T., & Seidman, L. J. (2006). Decreased volume of left and total anterior insular lobule in schizophrenia, Schizophrenia Research, 83, pp 155-171.

Merola, J. L., & Liederman, J. (1990). The effect of task difficulty upon the extent to which performance benefits from between-hemisphere division of inputs. International Journal of Neuroscience, 54, pp35-44.

Mori, S., Wakana, S., Van Zijl, P. C. M., & Nagae-Poetscher, L. M. (2005). MRI Atlas of Human White Matter. Elsevier, Amsterdam, The Netherlands

Mohr, B., Langrebe, A., & Schweinberger, S. R. (2002). Interhemispheric cooperation for familiar but not unfamiliar face processing, Neuropsychologia, 40, pp 1841-1848.

Niogi, S. N., Mukherjee, P., Ghajar, J., & Mc Candliss, B. D. (2010). Individual differences in distinct components of attention are linked to anatomical variations in distinct white matter tracts, Frontiers in Neuroanatomy, 4(2).

Ota, M., Obata, T., Akine, Y., Ito, H., Ikehira, H., Asada, T., & Suhura, T. (2006). Age-related degeneration of corpus callosum measured with diffusion tensor imaging, Neuroimage, 31, pp1445-1452.

Raybaud, C. (2010). The Corpus Callosum, The other great Forebrain Commissures and the Septum Pellucidum: Anatomy, Development, and Malformation. Neuroradiology, 52, pp 447- 477.

Soares, J. M., Marques, P., Alves, V., & Sousa, N. (2013). A hitchhikers guide to diffusion tensor imaging, Frontiers in neuroscience, 7 (31).

Soares, J. M., Sampiro, A., Marques, P., Fereira, L. M., Santos, N., C., Marques, F., Palha, J. A., & Cerque, J. J. (2013). Plasticity of resting state brain networks in recovering from stress, Frontiers in neuroscience, 7 (919).

Schulte, T., Pfefferbaum, A., & Sullivan, E. V. (2004). Parallel Interhemispheric processing in Aging and Alcoholism: relation to the Corpus Callosum size. Neuropsychologia, 42, pp 257- 271

Schulte, T., Muller-Oehring, E. M., Adalsteinsson, E., & Pfefferbaum, A. (2005). Corpus Callosal study: micro structural integrity influences interhemispheric processing: a diffusion tensor imaging study, Cerebral Cortex, 15, pp1384-1392

Schulte, T., & Muller-Oehring, E. M. (2010). Contribution of callosal connections to the interhemispheric integration of visuomotor and cognitive processes. Neuropsychology review, 20, PP 174-190.

Singh, H. (2000). Differences in Interhemispheric Interaction during Visual Information Processing in Mathematically Gifted Youth, Average Ability Adolescence, and College Students, Iowa State University.

Smith, S., M., Jenkinson, M., Woolrich, M., W., Beckman, C., F., Behrens, T., E. J., Johansen-Berg, H., Bannister, P. R., De Luca, M., Drobnjak, I., Flitney, D. E., Niazy, R., Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J. M., & Mathews, P., M. (2004). Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage, 23 (1), pp208-219.

Sotiropoulos, S., N., Aganj, I., Jbabdi, S., Sapiro, G., Lenglet, C., & Behrens, T. E. J. (2011). Interference on Constant Solid Angle Orientation Distribution Functions from Diffusion-Weighted MRI. The Organisation for Human Brain Mapping: Canada, p. 609.

Sternberg,R., & Sternberg, K. (2011). Cognition, Wadsworth Publishing.

Sullivan, E. V., Adalastiensson, E., & Pfefferbaum, A. (2006). Selective age-related degradation of anterior callosal fibre bundles quantifies in vivo with fibre tracking. Cerebral Cortex, 16, pp 1030-1039

Sullivan, E. V., Rohlfing, T., Pfefferbaum, A. (2010). Quantitative fibre tracking of lateral and inter-interhemispheric white matter systems in normal aging, Neurobiology of Aging, 31(3).

Turken, A. U., Whitfeild-Gabrieli, S., Bammer, R., Baldo, J., Dronkers, N. F., & Gabrieli, J. D. E. (2008). Cognitive Processing Speed and the Structure of White Matter Pathways: Convergent evidence from normal variation and lesion studies, Neuroimage, 42 (15), pp 1032-1044.

Van der Knaap, L. J. & Van der Ham, I. J. M. (2011). How does the corpus callosum mediate interhemispheric transfer? A review, Behavioural Brain Research, 223, pp 211-221.

Wang, S., & Melhem, E. R. (2005). Amyotrophic Lateral Sclerosis and Primary Lateral Sclerosis: The role of Diffusion Tensor Imaging and other Advanced MR-Based Techniques as Objective Upper Motor Neuron Markers, New York Academy of Sciences, 61-77.

Wechsler, D. (1999). Wechsler abbreviated scale of intelligence. Psychological Corporation.

Westerhausen, R., Kreuder, E., Woerner, W., Huster, R. J., Smit, C. M., Schweigerm E., & Wittling, W. (2006). Interhemispheric Transfer Time and Structural Properties of The Corpus Callosum. Neuroscience Letters, 409, pp140-145.

Weissman, D. H., & Banich, M. T. (2000). The cerebral hemispheres cooperate to perform complex but not simple tasks, Neuropsychology, 14, pp 41-59.

Welcome, S. E., & Chiarello, C. (2008). How dynamic is hemispheric interaction? Effects of task switching on the across-hemisphere advantage, Brain Cognition, 67 (1), pp 69-75.

Winker, W., M., Ridgway, G., R., Webster, M. A., Smith, S. M., & Nichols, T. E. (2014). Permutation interference for the general linear model. NeuroImage, 92, pp 381-397.

Zaidel, E., & Iacoboni, M. (2003). The Parallel Brain. Cambridge, Mass: MIT Press.

Zhang, W., Feng, L. (1999). Interhemispheric interaction affected by identification of Chinese characters, Brain Cognition, 39 (2), pp93-99.

Zhu, D., Zhang, T., Jian, X., Hu, X., Chen, H., Yang, N., Lv, J., Han, J., Guo, L., & Liu, T. (2014). Fusing DTI and fMRI data: A survey of methods and applications. Review. Neuroimage. 102, pp184-191.


  • There are currently no refbacks.

Creative Commons License 
This work is licensed under a Creative Commons Attribution 3.0 License

ISSN 1754-2383 [Online] ©University of Plymouth