The Riemann Hypothesis

Danny Allen, Kyle Bonetta-Martin, Elizabeth Codling, Simon Jefferies


This literature review provides a brief discussion of the Riemann Hypothesis, a conjecture regarding the location of the zeros on the Riemann zeta function.  We also look at the implications of solving the hypothesis, and investigate historical attempts to solve the conjecture.

Full Text:



Bernhard Riemann. Ueber die Anzahl der Primzahlen unter einer gegebenen Grosse. Ges. Math. Werke und Wissenschaftlicher Nachlaß 2, 145–155, 1859.

Wikipedia, Hilbert’s problems, accessed 16/12/2015,’s problems.

Enrico Bombieri. Problems of the millennium: The Riemann hypothesis, 2000.

Edward Charles Titchmarsh and David Rodney Heath-Brown. The theory of the Riemann zeta-function. Oxford University Press, 1986.

Jacques Hadamard. Sur la distribution des ze´ ros de la fonction ζ(s ) et ses consequences arithmetiques. Bulletin de la Societe´mathematique de France 24, 199–220, 1896.

Charles-Jean De la Vallee Poussin. Recherches analytiques sur la theorie des nombres premiers. Annales de la Societe Scientifique de Bruxelles 21 B, 351–368, 1896.

Wolfram MathWorld, Dirichlet L-Series, accessed 20/11/2015,

Ricardo Perez Marco, Notes on the Riemann hypothesis, accessed 20/11/2015,

Michael O Rabin. Probabilistic algorithm for testing primality. Journal of Number Theory 12, 128–138, 1980.

Dorian Goldfeld. Gauss class number problem for imaginary quadratic fields. Bulletin of the American Mathematical Society 13, 23–37, 1985.

John Derbyshire. Prime obsession. The Mathematical Intelligencer 26, 55–59, 2004.

Dorian Goldfeld. The elementary proof of the prime number theorem: An historical perspective. In: D. Chudnovsky, G. Chudnovsky, M. Nathanson, Number theory, Springer, New York, 179–192, 2003.

Charles Jean de La Vallee Poussin. Sur la fonction ζ(s ) de Riemann et le nombre des nombres premiers inferieurs a une limite donnee, volume 59. Memoires couronnes de l’Academie de Belgique 59, 1-74, 1899.

Arnold Walfisz. Weylsche Exponentialsummen in der neueren Zahlentheorie, Deutscher Verlag der Wissenschaften, Berlin, 1963.

Helge von Koch. Sur la distribution des nombres premiers. Acta Mathematica 24, 159–182, 1901.

Geoffrey Caveney, Jean-Louis Nicolas, and Jonathan Sondow. Robin’s theorem, primes, and a new elementary reformulation of the Riemann hypothesis. preprint arXiv:1110.5078, 2011.

Keith Briggs. Abundant numbers and the Riemann hypothesis. Experimental Mathematics 15, 251–256, 2006.

Wolfram MathWorld, Robin’s Theorem, accessed 10/12/2015,

Jeffrey C Lagarias. An elementary problem equivalent to the Riemann hypothesis. American Mathematical Monthly 109, 534–543, 2002.

Peter Borwein, Stephen Choi, Brendan Rooney, and Andrea Weirathmueller (Eds.). The Riemann hypothesis, Springer, New York, 2006.

Godfrey Harold Hardy, Sur les ze´ ros de la fonction ζ(s ) de Riemann. Comp. Rend. Acad. Sci. Paris 158, 1012–1014, 1914.

Brian Conrey. More than two fifths of the zeros of the Riemann zeta function are on the critical line. J. reine angew. Math 399, 1–26, 1989.

Hung M Bui, Brian Conrey, and Matthew P Young. More than 41% of the zeros of the zeta function are on the critical line. Acta Arith. 150, 35–64, 2011.

Marek Wolf. Applications of statistical mechanics in number theory. Physica A: Statistical Mechanics and its Applications 274, 149–157, 1999.

Andrew Odlyzko, Correspondence about the origins of the Hilbert-Polya Conjec- ture, accessed 20/11/2015,∼odlyzko/polya/index.html.

Atle Selberg. Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series. J. Indian Math. Soc. 20, 47–87, 1956.

Hugh L Montgomery. The pair correlation of zeros of the zeta function. In Proc. Symp. Pure Math. 24, pages 181–193, 1973.

Madan Lal Mehta. Random matrices, 3rd edition, Elsevier, Academic Press, Amsterdam, 2004.


  • There are currently no refbacks.

Creative Commons License 
This work is licensed under a Creative Commons Attribution 3.0 License

ISSN 1754-2383 [Online] ©University of Plymouth