The effects of turbulence on vertical distributions and concentrations of phytoplankton in (Case II) coastal waters

Daniel Ford

Abstract


Estuaries are extensive habitats that are vulnerable to rising sea levels; a detailed understanding of biological and physical interactions is required to predict future change. Surveys were conducted in an estuarine system across contrasting tidal states, of neap ebb and spring flood, to evaluate how changes in vertical turbulent mixing affect vertical phytoplankton distributions. Profiles of temperature, salinity, irradiance, shear microstructure and fluorescence were undertaken at multiple stations along the Tamar Estuary, UK. Results confirmed that turbulent mixing was predominately controlled by stratification, with lower mixing occurring on the neap ebb tide. At stations where the average water column mixing was low, chl-a concentrations increased in the surface waters as mixing was not redistributing cells throughout the water column. As mixing increased chl-a concentrations became more homogenous with depth. A decrease was observed in the chlorophyll-a / chlorophyll-b ratio as mixing increased, consistent with photoacclimation of phytoplankton when residing at depth. Away from significant riverine influence, gradients in vertical turbulent mixing caused vertical advection towards areas of higher mixing. Vertical distributions of phytoplankton should be driven by an equilibrium between vertical advection and sinking velocity. However, turbulent mixing gradients changed on small timescales (< 30 seconds) and so an equilibrium could not be maintained. These results indicate that in areas where turbulent mixing is maintained for long time periods an equilibrium could form, such as the deep chlorophyll maxima.

Keywords: Phytoplankton, Turbulence, Vertical Distributions, Pigments.


Full Text:

PDF

References


Ahel, M., Barlow, R. G. & Mantoura, R. F. C., 1996. Effect of salinity gradients on the distribution of phytoplankton pigments in a stratified estuary. Mar. Eco. Prog. Ser., Volume 143, pp. 289-295, doi: 10.3354/meps143289.

Bowers, D. G., Braithwaite, K. M., Nimmo-Smith, W. A. M. & Graham, G. W., 2009. Light scattering by particales suspended in the sea: The role of particle size and density. Continental Shelf Research, Volume 29, pp. 1748-1755, doi: 10.1016/j.csr.2009.06.004.

Bowers, D. G., Tett, P. & Walne, A. W., 1997. A note on seabed irradiance in shallow tidal seas. Jou. Mar. Bio. Ass. UK, 77(4), pp. 921 - 928, doi: 10.1017/S0025315400038534.

Bricaud, A., Morel, A. & Prieur, L., 1981. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Limnol. Oceanogr., Volume 26, pp. 43-53, doi: 10.4319/lo.1981.26.1.0043.

Campbell, J. W., 1995. The lognormal distribution as a model for bio-optical variability in the sea. Jour. Geoph. Res., 100(C7), pp. 13237-13254, doi: 10.1029/95JC00458.

Chai, C. et al., 2016. Phytoplankton pigments and functional community structure in relation to environmental factors in the Pearl River Estuary. Oceanologia, 58(3), pp. 201-211, doi: 10.1016/j.oceano.2016.03.001.

Chen, C. T. A. & Borges, A. V., 2009. Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep-Sea Res. II, Volume 56, pp. 578-590, doi: 10.1016/j.dsr2.2009.01.001.

Cloern, J. E., 1991. Tidal stirring and phytoplankton bloom dynamics in an estuary. J. of Mar. Res., Volume 49, pp. 203-221, doi: 10.1357/002224091784968611.

Cross, J., Nimmo-Smith, W. A. M., Hosegood, P. J. & Torres, R., 2014. The dispersal of phytoplankton populations by enchance turbulent mixing in a shallow coastal sea. J. Mar. Sc., Volume 136, pp. 55-64, doi: 10.1016/j.jmarsys.2014.03.009.

Cullen, J. J. & Lewis, M. R., 1988. The kinetics of algal photoadaptation in the context of vertical mixing. Jou. Plank. Res., 10(5), pp. 1039-1063, doi: 10.1093/plankt/10.5.1039.

Dillon, T. M., 1982. Vertical Overturns: A comparison of Thorpe and Ozmidov length scales. J. of Geophysical Res., Volume 87, pp. 9601-9613, doi: 10.1029/JC087iC12p09601.

Falkowski, P. G. & Owens, T. G., 1980. Light-shade adaptations: two strategies in marine phytoplankton. Plant Physiol., Volume 66, pp. 592-595, doi: 10.1104/pp.66.4.592.

Frankignoulle, M. et al., 1998. Carbon Dioxide Emission from European Estuaries. Science, Volume 282, pp. 434-436, doi: 10.1126/science.282.5388.434.

Gang, L. et al., 2014. Environmental gradients regulate the spatial variations of phytoplankton biomass and community structure in surface water of the Pearl River estuary. Acta Ecologica Sinica, Volume 34, pp. 129-133, doi: 10.1016/j.chnaes.2014.01.002.

Gargett, A. E. & Moum, J. N., 1995. Mixing effciencies in turbulent tidal fronts: Results from direct and indirect measurments of density flux. J. Phys. Oceanogr., Volume 25, pp. 2583-2608, doi: 10.1017/jfm.2017.36.

Gargett, A. E., Osborn, T. R. & Nasmyth, P. R., 1984. Local isotropy and the decay of turbulence in a stratified fluid. Jou. Fluid Mech., Volume 144, pp. 231-280, doi: 10.1017/S0022112084001592.

Geider, R. J., 1987. Light and Temperature dependence of the carbon to chlorophyll-a ratio in microalgae and cyanobacteria: implications for physiology and growth of phytoplankton. New Phytol., Volume 106, pp. 1-34, doi: 10.1111/j.1469-8137.1987.tb04788.x.

Gordon, H. R. & Morel, A. Y., 1983. Remote assessment of ocean colour for interpretation of satellite visible imagery. A review.. New York: Springer, Volume 81, pp. 198, doi: 10.1029/LN004.

Huisman, J., Pham Thi, N. N. N., Karl, D. M. & Sommeijer, B., 2006. Reduced mixing generates oscillations and chaos in the oceanic deep chlorophyll maximum. Nature, Volume 439, pp. 322 - 325, doi: 10.1038/nature04245.

Hunter, J. R., Craig, P. D. & Phillips, H. E., 1993. On the use of random walk models with spatially variable diffusivity. J. Comput. Phys., Volume 106, pp. 366-376, doi: 10.1016/S0021-9991(83)71114-9.

IPCC, 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the. Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.) ed. Geneva, Switzerland: IPCC.

Jeffery, S. & Humphrey, G., 1975. New Spectrophotometric Equations for Determining Chlorophylls a, b, c + c in Higher Plants, Algae and Natural Phytoplankton. Biochem. Physiol. Pflanzen. Bd, Volume 167, pp. 191-194, doi: 10.1016/S0015-3796(17)30778-3.

Kirk, J., 1994. Light and Photosynthesis in Aquatic Ecosystems. 2nd ed. Cambridge: Cambridge University Press.

Lancelot, C. & Muylaert, K., 2011. Trends in estuarine phytoplankton ecology. In: E. Wolanski, et al. eds. Treatise on Estuarine and Coastal Science: 7. Functioning ecosystems at the land-ocean interface. Amsterdam: Elsevier, pp. 5-15, doi: 10.1016/B978-0-12-374711-2.00703-8.

Lionard, M. et al., 2008. Inter-annual variability in phytoplankton summer blooms in the freshwater tidal reaches of the Schelde estuary (Belgium). Estuarine, Coastal and Shelf Science, Volume 79, pp. 694-700, doi: 10.1016/j.ecss.2008.06.013.

Machado, D. A., Marti, C. L. & Imberger, J., 2014. Influence of microscale turbulence on the phytoplankon of a temperate coastal embayment, Western Australia. Estuarine Coastal and Shelf Science, Volume 145, pp. 80-95, doi: 10.1016/j.ecss.2014.04.018.

Macias, D. et al., 2013. Turbulence as a driver for vertical plankton distribution in the subsurface upper ocean. Scientia Marina, 77(4), pp. 541-549, doi: 10.3989/scimar.03854.03A.

Monahan, E. C. & Pybus, M. J., 1978. Colour, ultraviolet absorbance and salinity of the surface waters off the west coast of Ireland. Nature, Volume 274, pp. 782-784, doi: 10.1038/274782a0.

Morel, A. & Prieur, L., 1977. Analysis of variations in ocean colour. Limnol. Oceanogr., Volume 22, pp. 709-722, doi: 10.4319/lo.1977.22.4.0709.

Osborn, T. R., 1980. Estimates of the local rate of vertical diffusion from dissipation measurements. J. of Phys. Oceano., Volume 10, pp. 83-89, doi: 10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.

Pelegri, J. L. & Sangra, P., 1998. A mechanism for layer formation in stratified geophysical flows. J. Geophys. Res., Volume 103, pp. 30679-30693, doi: 10.1029/98JC01627.

Peters, H., 1997. Observations of Stratified Turbulent Mixing in an Estuary: Neap-to-spring Variations During High River Flow. Estuarine, Coastal and Shelf Science, Volume 45, pp. 69-88, doi: 10.1006/ecss.1996.0180.

Peters, H. & Bokhorst, R., 2000. Microstructure Observations of Turbulent Mixing in a Partially Mixed Estuary. Part I: Dissipation Rates. J. Phys. Oceanog., Volume 30, pp. 1232-1244, doi: 10.1175/1520-0485(2000)030<1232:MOOTMI>2.0.CO;2.

Prieur, L. & Sathyendranath, S., 1981. An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter and other particulate matter. Limnol. Oceanogr., Volume 26, pp. 671-689, doi: 10.4319/lo.1981.26.4.0671.

Roubiex, V., RousseaumV. & Lancelot, C., 2008. Diatom succession and silicon removal from freshwater in estuarine mixing zones: from experiment to model. Estuarine, Coastal and Shelf Science, Volume 78, pp. 14-26.

Roy, S., Llewellyn, C. A., Egeland, E. S. & Johnsen, G., 2011. Phytoplankton Pigments: Characterixation, Chemotaxononmy and Applications in Oceanography. Cambridge: Cambridge University Press, doi: 10.1111/jpy.12035.

Ruiz, J., Macias, D. & Peters, F., 2004. Turbulence increases the average settling velocity of phytoplankton cells. Proceedings of the National Academy of Sciences, Volume USA 101, pp. 17720-17724, doi: 10.1073/pnas.0401539101.

Sieburth, J. M. & Jensen, A., 1968. Studies on algal substances in the sea. I. Gelbstoff (humic material) in terrestrial and marine waters. J. Exp. Mar. Biol. Ecol., Volume 2, pp. 174-189, doi: 10.1016/0022-0981(68)90008-7.

Strickland, J. D. H. & Parsons, T. R., 1972. A practical handbook of seawater analysis. 2nd ed. Ottawa: Fish. Res. Board. Can. Bull..

Thorpe, S. A., 1977. Turbulence and Mixing in a Scottish Loch. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, Volume 286, pp. 125-181, doi: 10.1098/rsta.1977.0112.

Tilzer, M. M. & Goldman, C. R., 1978. Importance of mixing, themal stratification and light adaptation for phytoplankton productivity in Lake Tahoe (California-Nevada). Ecology, Volume 59, pp. 810-821, doi: 10.2307/1938785.

Tilzer, M. M., Paerl, H. W. & Goldman, C. R., 1977. Sustained viability of aphotic phytoplankton in Lake Tahoe (California-Nevada). Limnology and Oceanography, 22(1), pp. 84-91, doi: 10.4319/lo.1977.22.1.0084.

Uncles, R. J. & Stephens, J. A., 1990. Computed and Observed Currents, Elevations, and Salinity in a Branching Estuary. Estuaries, 13(2), pp. 133-144, doi: 10.2307/1351582.

Visser, A., 1997. Using random walk models to simulate the vertical distribution of particales in a turbulent water column. Mar. Eco. Prog. Ser., Volume 158, pp. 275-281, doi: 10.3354/meps158275.

Yamazaki, H. & Osborn, T. R., 1993. Direct estimation of heat flux in the seasonal thermocline. J. Phys. Ocenogr., Volume 23, pp. 503-516, doi: 10.1175/1520-0485(1993)023<0503:DEOHFI>2.0.CO;2.


Refbacks

  • There are currently no refbacks.


Creative Commons License 
This work is licensed under a Creative Commons Attribution 3.0 License

ISSN 1754-2383 [Online] ©University of Plymouth